Explore / Study / Economics / Macroeconomics 371 words | 2 minutes

§18 Asset Pricing

  1. Stock Prices as Present Values

Stock Prices as Present Values

  • Stocks have two key differences with bonds:

    • They pay dividends that vary over time as conditions change (no fixed coupons);
    • They do not have a finite terminal date (no maturity).
  • Let’s price a stock by arbitrage, assuming the investor can opt between a 1y bond or buying stocks

    1+i1t+xs=$Dt+1e+$Qt+1e$Qt1 + i_{1t} + x^{s} = \frac{\$D_{t+1}^{e} + \$Q_{t+1}^{e}}{\$Q_{t}}

  • Reorganizing we have:

    $Qt=$Dt+1e(1+i1t+xs)+$Qt+1e(1+i1t+xs)\$Q_{t} = \frac{\$D_{t+1}^{e}}{(1 + i_{1t} + x^{s})} + \frac{\$Q_{t+1}^{e}}{(1 + i_{1t} + x^{s})}

    $Qt = $Dt+1e(1+i1t+xs)+$Dt+2e(1+i1t+xs)(1+i1t+1e+xs)+$Qt+2e(1+i1t+xs)(1+i1t+1e+xs)= $Dt+1e(1+i1t+xs)++$Dt+ne(1+i1t+xs)(1+i1t+n1e+xs)+\begin{aligned}\$Q_t \ &= \ \frac{\$D_{t+1}^{e}}{(1 + i_{1t} + x^{s})} + \frac{\$D_{t+2}^{e}}{(1 + i_{1t} + x^{s})(1 + i_{1t+1}^{e} + x^{s})} \\&\quad + \frac{\$Q_{t+2}^{e}}{(1 + i_{1t} + x^{s})(1 + i_{1t+1}^{e} + x^{s})} \\&= \ \frac{\$D_{t+1}^{e}}{(1 + i_{1t} + x^{s})} + \cdots \\&\quad + \frac{\$D_{t+n}^{e}}{(1 + i_{1t} + x^{s}) \cdots (1 + i_{1t+n-1}^{e} + x^{s})} + \cdots\end{aligned}

  • Note also that we can derive this expression in real terms

    Qt=Dt+1e(1+r1t+xs)++Dt+ne(1+r1t+xs)(1+r1t+n1e+xs)+Q_t = \frac{D_{t+1}^{e}}{(1 + r_{1t} + x^{s})} + \cdots + \frac{D_{t+n}^{e}}{(1 + r_{1t} + x^{s}) \cdots (1 + r_{1t+n-1}^{e} + x^{s})} + \cdots

— Apr 26, 2025

Creative Commons License
§18 Asset Pricing by Lu Meng is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at About.