Explore / Study / Economics / Macroeconomics 642 words | 4 minutes

§10 Saving, Capital Accumulation, and Output

  1. Interactions between Output and Capital
  2. Interactions between Output and Capital
  3. Getting a Sense of Magnitudes
  4. What if there is population growth?

Interactions between Output and Capital

  • Assume NN is constant (no population growth) and recall from previous lecture

    YtN=f(KtN)with f>0,f<0\frac{Y_t}{N} = f \left( \frac{K_t}{N} \right) \quad \text{with } f' > 0, f'' < 0

  • Assume the economy is closed and there is no public deficit, so

    It=StI_t = S_t

  • Moreover, assume private saving is proportional to income S=sYS = sY, so that

    It=sYtI_t = sY_t

Interactions between Output and Capital

  • The evolution of the capital stock is

    Kt+1=(1δ)Kt+ItK_{t+1} = (1 - \delta)K_t + I_t

  • In per worker terms is

    Kt+1N=(1δ)KtN+sYtN\frac{K_{t+1}}{N} = (1 - \delta)\frac{K_t}{N} + s\frac{Y_t}{N}

  • Or

    Kt+1NKtN=sYtNδKtN\frac{K_{t+1}}{N} - \frac{K_t}{N} = s\frac{Y_t}{N} - \delta\frac{K_t}{N}

  • The change in the capital stock per worker is equal to the saving per worker minus depreciation.

  • Using the production function to substitute Y/NY/N, we get a difference equation for K/NK/N:

    Kt+1NKtN=sf(KtN)δKtN\frac{K_{t+1}}{N} - \frac{K_t}{N} = sf \left( \frac{K_t}{N} \right) - \delta\frac{K_t}{N}

Getting a Sense of Magnitudes

  • Assume Y=KNY = \sqrt{K}\sqrt{N} so that

    Kt+1NKtN=sKtNδKtN\frac{K_{t+1}}{N} - \frac{K_t}{N} = s\sqrt{\frac{K_t}{N}} - \delta\frac{K_t}{N}

  • Solving for the steady state (i.e. K/NK/N constant)

    KN=(sδ)2\frac{K^*}{N} = \left(\frac{s}{\delta}\right)^2

    YN=KN=sδ\frac{Y^*}{N} = \sqrt{\frac{K^*}{N}} = \frac{s}{\delta}

  • In the long run, output per worker doubles when the saving rate doubles.

    CN=YNδKN=s(1s)α\begin{aligned}\frac{C^*}{N} &= \frac{Y^*}{N} - \delta \frac{K^*}{N} \\&= \frac{s(1 - s)}{\alpha}\end{aligned}

What if there is population growth?

  • The evolution of the capital stock doesn’t change

    Kt+1=(1δ)Kt+sYtK_{t+1} = (1 - \delta)K_t + sY_t

  • In per worker terms is a little trickier…

    Kt+1Nt+1=(1δ)KtNt+1+sYtNt+1=(1δ)NtNt+1KtNt+sNtNt+1YtNt(1δ)(1gN)KtNt+s(1gN)YtNt(1δgN)KtNt+sYtNt\begin{aligned} \frac{K_{t+1}}{N_{t+1}} &= (1 - \delta) \frac{K_t}{N_{t+1}} + s \frac{Y_t}{N_{t+1}} \\ &= (1 - \delta) \frac{N_t}{N_{t+1}} \frac{K_t}{N_t} + s \frac{N_t}{N_{t+1}} \frac{Y_t}{N_t} \\ &\approx (1 - \delta)(1 - g_N) \frac{K_t}{N_t} + s(1 - g_N) \frac{Y_t}{N_t} \\ &\approx (1 - \delta - g_N) \frac{K_t}{N_t} + s \frac{Y_t}{N_t} \end{aligned}

  • or

    Kt+1Nt+1KtNt=sYtNt(δ+gN)KtNt=sf(KtNt)(δ+gN)KtNt\begin{aligned}\frac{K_{t+1}}{N_{t+1}} - \frac{K_t}{N_t} &= s\frac{Y_t}{N_t} - (\delta + g_N)\frac{K_t}{N_t} \\&= sf\left(\frac{K_t}{N_t}\right) - (\delta + g_N)\frac{K_t}{N_t}\end{aligned}

— Apr 18, 2025

Creative Commons License
§10 Saving, Capital Accumulation, and Output by Lu Meng is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at About.