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Abstract 

Modern hospitals use 2D echocardiography to obtain cross-section views of the 

heart. However, this process is time-consuming regarding the large number of cross-

section views needed to be obtained and the insufficient training of transducer operators. 

The lengthy acquisition time also increases the wait time before a patient can receive 

an echocardiography examination. Therefore, the project aims to develop a machine 

learning algorithm to reconstruct the cross-section views from 3D echocardiography 

automatically. It consists of mainly two tasks. The first landmark localization task 

utilizes 3D echocardiography to shorten the acquisition time of the heart’s structural 

information and extends the fully convolutional SpatialConfiguration-Net (SCN) to 

detect local and global features of cardiac landmarks in the 3D echocardiography. SCN 

excels at this job due to its two task-oriented components that can be trained in an end-

to-end manner. Besides, the Adaptive Wing loss is incorporated into SCN for better 

convergence to the heatmap-based supervision. The second cross-section recovery task 

adopts the least squared distance fit to recover the cross-section plane parameters based 

on the predicted landmark locations and reconstructs the 2D cross-section views. The 

project achieved desirable results in both the landmark localization and cross-section 

recovery tasks by demonstrating small errors on multiple metrics and outputting 

satisfactory visualizations on the cardiac dataset with limited training data. As a result, 

the acquisition and analyzing time will be significantly shortened. The project will be 

the world’s first AI software for automatically reconstructing cross-section views from 

3D echocardiography. Furthermore, it is the prerequisite of many downstream 2D-

based heart disease classifiers that can assist doctors in heart disease diagnoses and 

make mass heart disease screening possible.  

Keywords: 3D echocardiography, convolutional neural network, landmark localization 
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1. Introduction 

1.1. Background 

According to the US National Center for Biotechnology Information, heart diseases 

are the leading cause of death globally, killing an estimated 13 million people annually, 

a quarter of the global total [1]. They are also the leading cause of hospitalization [2], 

which heavily burdens the global healthcare system. 

Currently, hospitals mainly use 2D echocardiography to diagnose heart diseases [3]. 

This non-invasive technology enables medical practitioners to obtain a cross-section 

view of the heart structure with one scan. However, according to the American Society 

of Echocardiography, transducer operators need to seek 27 cross-section views to 

restore the complete structure of a heart [4]. Besides, the quality of the views is subject 

to the operators’ individual experience. Therefore, the acquisition time for an 

echocardiography examination is as long as 30 minutes [5], causing patients to queue 

for 20 weeks to receive an examination [6]. 

 

1.2. Objectives 

This project aims to speed up the examination of heart diseases by using 3D 

echocardiography and machine learning. 3D echocardiography can acquire a complete 

3D representation of the heart with one scan in 5 seconds [7], significantly reducing the 

acquisition time. However, as 3D volumetric data is non-trivial for cardiologists to 

interpret, the project utilizes deep neural networks to reconstruct the cross-section 

views from 3D data automatically. This machine-learning approach can eliminate 

uncertainty from transducer operators’ technical abilities.  

The project is the world’s first AI software for automatically reconstructing cross-

section views from 3D echocardiography data. It is expected to reduce the 

echocardiography examination time to less than 3 minutes and shorten the wait time for 

an echocardiography examination to less than 10 weeks.  
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1.3. Outline 

This report will first review the literature and then discuss in detail the methods used 

in data preparation, landmark localization, and cross-section recovery. At last, it will 

provide evaluations and visualizations of the final results.  
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2. Related Work 

As each cross-section view in the cardiac examination is defined by multiple cardiac 

landmarks, i.e., multiple cardiac feature points lie on each cross-section plane, 

predicting the locations of the landmarks is essential to restoring the locations of the 

cross-section planes. In the literature, extensive machine-learning methods have been 

proposed for anatomical landmark detection. Most methods are based on convolutional 

neural networks (CNNs). Therefore, this section will first discuss the limitations of pure 

CNNs and review three advanced neural network frameworks.  

 

2.1. Convolutional Neural Networks 

CNNs are popular in landmark detection, as they outperform the state-of-the-art in 

many computer vision tasks, e.g., ImageNet classification [8]. However, according to 

Payer et al. [9], pure CNNs do not perform satisfactorily on landmark prediction 

because, different from classification tasks, landmark prediction requires maintaining 

high-resolution feature maps to retain the accurate positions of the landmarks. As a 

result, CNNs perform poorly if they utilize pooling layers to reduce the resolution of 

feature maps [9].  

This brings two major problems: larger feature maps mean a larger number of 

network parameters to be trained, which leads to greater memory consumption and 

lower efficiency; the lack of pooling layers restricts the receptive fields of convolutional 

kernels so that the network can only recognize patterns in small local areas but cannot 

draw connections between two far away areas. In landmark detection, not only the 

pattern of a landmark itself but also the relative positions between landmarks can help 

us locate the landmark. Therefore, many advanced methods aim to improve pure CNNs 

by incorporating local and global pattern recognition.  

 

2.2. Patch-based Fully Convolutional Neural Network 

Noothout et al. [10] proposed a patch-based fully convolutional neural network 

(FCNN) that combines regression and classification. FCNN first divides the input 3D 
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echo data into multiple isotropic voxels, i.e., 3D patches of equal length, width, and 

height. Then, for each voxel, FCNN provides two outputs. The first output is a 3D 

displacement vector from the voxel’s center to the landmark location. The second is a 

classification score indicating whether the voxel contains the landmark. To predict the 

actual location of a landmark, FCNN only selects voxels that contain or are near the 

landmark and averages the 3D vectors corresponding to these voxels. This way, it 

incorporates information from different voxels and avoids interference from far-away 

voxels.  

However, FCNN suffers from both structural and computational shortcomings. 

Firstly, distance is not the only factor determining a voxel’s usefulness in landmark 

prediction. Two parts of the heart may have structural relationships, even if not adjacent. 

Secondly, FCNN can only predict one landmark with one trained model. As our dataset 

contains 32 landmarks, it would be time-consuming to train 32 individual models.  

 

2.3. Two-stage Task-oriented Deep Learning 

Two-stage task-oriented deep learning (T2DL) framework proposed by Zhang et al. 

[11] is another novel framework that outperforms FCNN in that it can simultaneously 

predict multiple landmarks and automatically learn relationships among landmarks.  

T2DL consists of two components, and they are trained separately in two stages. In 

the first stage, T2DL samples random voxels from 3D echo data and uses these sampled 

voxels to train the first component with voxel-based displacement vectors as 

supervision. In the second stage, the parameters in the first component are frozen, and 

the second component is concatenated to the end of the first component. To train the 

second component, T2DL feeds complete 3D echo data into the network and uses 

absolute landmark coordinates as supervision. T2DL is designed for large-scale 

landmarks [11], with the first component learning internal features within voxels and 

the second component considering correlation among voxels.  

The method allows the network to automatically detect correlations among voxels 

instead of relying on distance, as in FCNN. However, the preprocessing of T2DL is 
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quite tedious. T2DL requires sampling millions of voxels as the training data for the 

first component, which significantly increases time complexity in both preprocessing 

and training. 

 

2.4. SpatialConfiguration-Net 

Unlike the voxel-based methods above, Payer et al. [12] proposed the 

SpatialConfiguration-Net (SCN) that predicts landmarks using heatmaps. Instead of 

outputting coordinates, SCN outputs heatmaps where brightness indicates the possible 

appearance of landmarks. SCN is also composed of two components, as shown in 

Figure 1. The first Local Appearance component outputs heatmaps by considering 

features in local areas. The second Spatial Configuration component interrelates 

previous heatmaps of different landmarks and outputs new heatmaps based on 

relationships among landmarks. At last, the heatmaps from the two components are 

element-wisely multiplied such that common hotspots are enhanced, and different 

hotspots are suppressed.  

 

 

Figure 1. Logical Structure of SpatialConfiguration-Net. ■: input echo data, ■: local 

appearance heatmaps, ■: spatial configuration heatmaps, ■: output heatmaps, ⨂: 

element-wise multiplication.  

 

This method not only predicts multiple landmarks at once but also requires less 
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complex preprocessing, which is why I chose SCN as the basic network framework and 

optimized its performance on our cardiac dataset.  
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3. Data Preparation 

This section will describe the dataset and then discuss different data preparation 

methods before feeding the data into the neural network.  

 

3.1. Description 

Our research team collaborates with Prince of Wales Hospital to collect annotated 

echocardiography data for training the network. After discussion with expert 

cardiologists, we confirmed that 32 landmarks and 7 cross-sections are enough for 

diagnosing heart diseases and are dealt with in this project. The affiliation of landmarks 

and cross-sections is shown in Table 1.  

 

Table 1. Affiliation of Landmarks and Cross-section Views 

View Name Landmark Name 

4 Chamber View (A4C) MV tip (𝐿1
(𝐴4𝐶)

) 

A4C-TV tip (𝐿2
(𝐴4𝐶)

) 

A4C-LV apex (𝐿3
(𝐴4𝐶)

) 

Medial mitral annulus (𝐿4
(𝐴4𝐶)

) 

Lateral mitral annulus (𝐿5
(𝐴4𝐶)

) 

Tricuspid annulus (𝐿6
(𝐴4𝐶)

) 

2 Chamber View (A2C) A2C-LV apex (𝐿1
(𝐴2𝐶)

) 

Anterolateral mitral annulus (𝐿2
(𝐴2𝐶)

) 

Posteromedial mitral annulus (𝐿3
(𝐴2𝐶)

) 

Long-axis View (ALAX) ALAX-LV apex (𝐿1
(𝐴𝐿𝐴𝑋)

) 

Aortic annulus (𝐿2
(𝐴𝐿𝐴𝑋)

) 

Anterior mitral annulus (𝐿3
(𝐴𝐿𝐴𝑋)

) 
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Posterior mitral annulus (𝐿4
(𝐴𝐿𝐴𝑋)

) 

Basal Short-axis View (SAXB) Center of AV (𝐿1
(𝑆𝐴𝑋𝐵)

) 

IAS (𝐿2
(𝑆𝐴𝑋𝐵)

) 

SAXB-TV tip (𝐿3
(𝑆𝐴𝑋𝐵)

) 

PV tip (𝐿4
(𝑆𝐴𝑋𝐵)

) 

MV Short-axis View (SAXMV) MV anterior leaflet A1 (𝐿1
(𝑆𝐴𝑋𝑀𝑉)

) 

MV anterior leaflet A2 (𝐿2
(𝑆𝐴𝑋𝑀𝑉)

) 

MV anterior leaflet A3 (𝐿3
(𝑆𝐴𝑋𝑀𝑉)

) 

MV posterior leaflet P1 (𝐿4
(𝑆𝐴𝑋𝑀𝑉)

) 

MV posterior leaflet P2 (𝐿5
(𝑆𝐴𝑋𝑀𝑉)

) 

MV posterior leaflet P3 (𝐿6
(𝑆𝐴𝑋𝑀𝑉)

) 

Mid LV Short-axis View (SAXM) Anterolateral papillary muscle (𝐿1
(𝑆𝐴𝑋𝑀)

) 

Posteromedial papillary muscle (𝐿2
(𝑆𝐴𝑋𝑀)

) 

IVS (𝐿3
(𝑆𝐴𝑋𝑀)

) 

IW (𝐿4
(𝑆𝐴𝑋𝑀)

) 

LV (𝐿5
(𝑆𝐴𝑋𝑀)

) 

RV (𝐿6
(𝑆𝐴𝑋𝑀)

) 

Apical LV Short-axis View (SAXA) SAXA-LV apex (𝐿1
(𝑆𝐴𝑋𝐴)

) 

Interventricular septum (𝐿2
(𝑆𝐴𝑋𝐴)

) 

RV apex (𝐿3
(𝑆𝐴𝑋𝐴)

) 

𝐿𝑖
(𝑉𝐼𝐸𝑊)

  represents the 𝑖 -th landmark on the cross-section 𝑉𝐼𝐸𝑊 , which will be 

referred to later.  
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Figure 2. 3D Echo Data Example. This is a static frame of the 4D echo data rendered 

with the 3D Slicer image computing platform.  

 

The dataset consists of 371 data points collected from September 2021 to 

November 2021. Each data point comprises an NRRD file and its corresponding JSON 

file. The NRRD file is 4D, containing the complete 3D pyramid-shaped echo data of 

the heart over approximately 4 seconds, as rendered in Figure 2. Each intensity value 

in the 4D data ranges from 0 to 255, where 0 means no echo and 255 represents 

the strongest echo. The JSON file labels landmarks’ information of the NRRD file. For 

each identifiable landmark, the JSON file describes its name, the cross-section view it 

belongs to, and its 4D coordinate, including time, 𝑥, 𝑦, and 𝑧, relative to the NRRD 

data.  

 

3.2. Preprocessing 

 

 

Figure 3. Data Preprocessing Workflow. The extracted 3D echo data is first 

normalized, then padded into an isotropic cube, and finally resized to the desired input 

size.  

 

This sub-section will discuss methods used in data preprocessing, including 
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extraction, normalization, and resizing, the workflow of which is shown in Figure 3. 

Besides it will also talk about splitting the training, validation, and testing dataset.  

 

3.2.1. Extraction 

My network uses 3D echo data with 𝑥 , 𝑦 , and 𝑧  axes as input. Therefore, I 

needed to extract 3D data from the 4D data at the time index when the landmarks are 

labeled. Notably, landmarks on different cross-sections were mostly labeled at different 

time indices within 4D data. Hence, in principle, I needed to extract seven 3D data from 

each 4D data and train separate models for each cross-section.  

There are two points to note here. Firstly, some 4D data may only contain labels of 

some but not all seven cross-sections. As a result, such data was only used for training 

those labeled cross-sections, which caused the different number of training data for 

different cross-sections, as shown in Table 2. Secondly, landmarks on the SAXA, 

SAXM, and SAXMV views were labeled at the same time index because they are 

defined to be mutually parallel. Therefore, it is possible to use one model to predict all 

landmarks on the three cross-sections together. But I decided to train separate models 

for each cross-section for versatility. As a result, three copies of the same 3D data were 

generated for SAXA, SAXM, and SAXMV.  

 

3.2.2. Normalization 

After extracting the 3D echo data, I performed normalization to the data because 

the unit length along the 𝑥 , 𝑦 , and 𝑧  axes may be different due to the setting of 

transducers, as illustrated in the leftmost image of Figure 3. To correct this distortion, I 

used the inter-spacing information recorded in the NRRD header to restore the echo 

data’s actual ratio using third-order spline interpolation. The unit length along all axes 

of the restored echo data is 1 millimeter.  

 

3.2.3. Resizing 

As the normalized data have different lengths, widths, and heights, I further resized 
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the data to the same size so that they can be fed into the neural network in batches. To 

achieve this purpose without distorting the echo data or introducing too much blank 

space, I first used zero values to pad each data into an isotropic cube according to its 

longest edge length and then zoomed the cube into a suitable size (e.g., 

128 × 128 × 128 ). Third-order spline interpolation was applied when zooming the 

data, and the scaling ratio was recorded for later evaluation. Additionally, a new set of 

annotations were generated to reflect the changes made to the data during normalization 

and resizing so that the locations of all landmarks were valid for the new echo data.  

 

3.2.4. Splitting 

For data splitting, I chose a fixed amount of 54 echo data as the testing set and 

adopted a training ∶ validation = 8 ∶ 2  ratio on the remaining data. However, 

although there are 371 labeled echo data in total, not all data contain annotations of all 

seven cross-sections, as discussed before. Therefore, the actual amount of data used for 

training and evaluating models of different cross-sections was slightly different, as 

shown in Table 2.  

 

Table 2. Number of Training, Validation, and Testing Data 

Cross-section Total Training Validation Testing 

A2C 356 241 61 54 

A4C 360 244 62 54 

ALAX 353 240 60 53 

SAXA 330 223 56 51 

SAXB 305 207 52 46 

SAXM 359 244 61 54 

SAXMV 319 216 54 49 

The number of testing data is at most 54, and the ratio of training and validation data is 

8 ∶ 2.  
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4. Methodology 

4.1. Network Structure 

My network reimplements the idea and the structure of the SpatialConfiguration-

Net [12]. It is composed of two components, as shown in Figure 4. The first local 

appearance component outputs heatmaps by considering features in local areas. The 

second spatial configuration component interrelates previous heatmaps of different 

landmarks and outputs new heatmaps based on relationships among landmarks. At last, 

the heatmaps from the two components are element-wisely multiplied such that 

common hotspots are enhanced, and different hotspots are suppressed.  

 

 
Figure 4. SpatialConfiguration-Net Architecture. The local appearance component 

generates heatmaps from the input echo data, and the spatial configuration component 

generates heatmaps from the local appearance heatmaps. The final heatmaps are the 

product of the local appearance and spatial configuration heatmaps. ■: input echo data, 

■: local appearance heatmaps, ■: spatial configuration heatmaps, ■: output heatmaps, 

■: intermediate feature maps; →: convolution, →: down-sampling, →: up-sampling; 

⨁: element-wise addition, ⨂: element-wise multiplication. 

 

The local appearance component has four levels of different resolutions to capture 

different levels of detail. Each level consists of three 3 × 3 × 3  convolution layers 

with 128 intermediate channels where the small kernel size enables the network to 
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focus on local features. A dropout of 0.5 is included after the first convolution layer 

to increase generalizability. A 2 × 2 × 2 average pooling after the second convolution 

layer generates the level below. The local appearance heatmaps are generated from a 

3 × 3 × 3 convolution layer with the number of output channels equal to the number 

of landmarks.  

The spatial configuration component is calculated at 
1

4
 of the input resolution. It 

consists of three 7 × 7 × 7 convolution layers with 128 intermediate channels and 

an additional 7 × 7 × 7 convolution layer having the number of output channels equal 

to the number of landmarks. The low spatial resolution and the large kernel size enable 

the spatial configuration component to relate global features and output coarser 

heatmaps that can discriminate different local areas on the local appearance heatmaps. 

At last, the outputs are up-sampled back to the input resolution with tri-cubic 

interpolation.  

Each intermediate convolution layer has a LeakyReLU activation with a negative 

slope of 0.1 . The convolution layer generating local appearance heatmaps has no 

activation, while the convolution layer generating spatial configuration heatmaps has a 

TanH activation.  

 

4.2. Ground Truth Generation 

Since the output of SCN is a multi-channel heatmap, to supervise the network, I 

needed to generate a corresponding ground truth heatmap from the ground truth 

landmark locations for each echo data.  

Let 𝑁  be the number of landmarks on a cross-section view. A 3D channel 

ℍ𝑖
∗(𝐱): ℝ3 → ℝ of a target landmark 𝐿𝑖 , 𝑖 ∈ {1, … , 𝑁} (see Table 1) is generated by 

placing a normalized 3D Gaussian function at the landmark location 𝐱𝑖
∗ ∈ ℝ3 , as 

follows:  

ℍ𝑖
∗(𝐱; 𝜎) = exp (−

‖𝐱 − 𝐱𝑖
∗‖2

2𝜎2
) 

where the standard deviation 𝜎 ∈ ℝ+ is a hyperparameter that controls the peak width 
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of the Gaussian function. Note that there is no coefficient preceding the exponent, as 

the peak value is always normalized to 1  to avoid small values of the Gaussian 

function.  

 

 

Figure 5. Ground Truth Heatmap Examples. The images are 2D slices of 3D 

heatmap channels where Gaussian functions with different standard deviation 𝜎 are 

centered at the same location.  

 

2D example heatmaps with different standard deviation 𝜎 are shown in Figure 5. 

Here 𝜎 represents the accuracy at which the network learns the landmark location. A 

large 𝜎 makes the network easier to fit to the heatmap, but the extracted maximum 

point would be less accurate. Meanwhile, a small 𝜎 makes it very hard to learn the 

landmark location as the foreground is too small compared to the background. To 

choose a reasonable 𝜎 , I combined my visualizations of heatmaps with different 𝜎 

levels with experiments done by Payer et al., who used 𝜎 ∈ [1.5, 3.0] for an average 

volume size of 294 × 512 × 72  [12]. I decided that 𝜎 = 2.0  would be a suitable 

value if my volume size is 128 × 128 × 128.  

It is noteworthy that if there are more than three landmarks on a cross-section, some 

landmarks may not be labeled with the ground truth 𝐱𝑖
∗, possibly due to their vagueness. 

In such cases, the corresponding ℍ𝑖
∗  was just left blank with all zero values, and 

special handling during training will be introduced in Section 5.1.  

Finally, ℍ1
∗ , … , ℍ𝑁

∗  are stacked together as different channels of the heatmap ℍ∗ 

for one cross-section.  
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5. Experiments 

5.1. Setup 

During experiments, I tested different hyperparameters, including spatial resolution, 

the number of intermediate channels, batch size, loss function, optimizer, learning rate, 

and L2 regularization.  

In each experiment, the model was trained for at most 100 epochs, corresponding 

to approximately 23000 iterations. When loading the training data 𝕏𝐼𝑁, the intensity 

values of the original echo data 𝕏 were scaled and shifted from [0, 255] to [−1, 1] 

for faster convergence, as follows:  

𝕏𝐼𝑁 =
2𝕏 − (max(𝕏) + min(𝕏))

max(𝕏) − min(𝕏)
 

The loss is summed over voxels in each channel of the predicted heatmap and then 

averaged over all channels. Channels without ground truth values are left unsupervised 

by leaving them out of the averaged loss:  

𝐹𝑙𝑜𝑠𝑠(ℍ, ℍ∗) =
1

|𝐶𝑙|
∑  

𝑖∈𝐶𝑙

∑ 𝑓𝑙𝑜𝑠𝑠 (ℍ𝑖,(𝑥,𝑦,𝑧), ℍ𝑖,(𝑥,𝑦,𝑧)
∗ )

𝑥,𝑦,𝑧

 

where 𝑓𝑙𝑜𝑠𝑠 ∶ ℝ2 → ℝ  is a scaler loss function, ℍ  is the predicted heatmap, ℍ∗  is 

the ground truth heatmap, and 𝐶𝑙 is the set of channels whose corresponding landmark 

is labeled.  

 

5.2. Hardware Limitation 

All models were trained on a NIVIDA GeForce RTX 2080Ti graphics card with 

10GB of VRAM. The training time of 100 epochs was approximately 30 hours. Due to 

the limited VRAM, I first needed to determine the spatial resolution: the size of input 

echo data and output heatmaps, the number of intermediate channels during 

convolution, and the batch size. To test whether a configuration was runnable under the 

limited memory, I fed randomly initiated dummy data of different sizes into the SCN 

network of different structures. All runnable configurations are shown in Table 3.  

The top priority is spatial resolution, as it directly determines the fineness of the 
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predicted landmark location. As shown in Table 3, the maximum attainable resolution 

is 128 × 128 × 128 . Under this resolution, the maximum number of intermediate 

channels is 128, the same as the recommended number by Payer et al. [12]. Although 

the batch size is only 1 in this configuration, larger batch sizes may not improve the 

result, according to experiments done by Payer et al. [12]. Therefore, I determined that 

the 128 × 128 × 128  resolution, 128  channels, and batch size of 1  were the 

optimal choices.  

 

Table 3. Runnable Configurations 

 B = 1 B = 2 

C = 64 C = 128 C = 256 CH = 64 C = 128 C = 256 

R = 643 ✓ ✓ ✓ ✓ ✓ ✓ 

R = 1283 ✓ ✓ ✗ ✓ ✗ ✗ 

R = 2563 ✗ ✗ ✗ ✗ ✗ ✗ 

B: batch size, C: number of channels in intermediate feature maps, R: spatial resolution; 

✓: runnable, ✗: not runnable.  

 

5.3. Hyperparameter Tunning 

To figure out the optimal model configuration, I performed experiments on the A2C 

view model to test the following hyperparameters:  

 Loss function: MSE loss, L1 loss, smooth L1 loss 

 Optimizer: Nesterov SGD, AdamW 

 Learning rate: 1𝑒-6, 1𝑒-5, 1𝑒-4 

 L2 regularization: 5𝑒-4, 5𝑒-3 

I first tested Nesterov’s accelerated SGD with 0.99 momentum, a learning rate of 

1𝑒-6, and the MSE loss. It turned out that the training loss dropped very slowly, and 

there was no significant improvement even after the 20th epoch. However, when I 

increased the learning rate to 1𝑒-5 or 1𝑒-4, there was a gradient explosion. I doubted 

this might be due to the large gradient of the MSE loss. Therefore, I changed the loss 

function to L1 loss and smooth L1 loss to see if they could mitigate gradient explosion. 
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However, the problem persisted. It was also possible that Nesterov’s acceleration had 

some counter effects that led to gradient explosion on my network and dataset. So, I 

switched to the AdamW optimizer, which has an adaptive learning rate. Eventually, by 

setting an initial learning rate of 1𝑒-5 , the training MSE loss could drop steadily. 

Besides, different values of L2 regularization did not seem to have a significant impact 

on the training loss, so I stuck to 5𝑒-4 used by Payer et al. [12].  

 

 
Figure 6. Loss Plot after Hyperparameter Tuning. The 𝑦-axis is the MSE loss. For 

the training loss, the 𝑥-axis is the number of iterations. For the validation loss, the 𝑥-

axis is the number of epochs.  

 

I trained a model for the A2C view under this optimal configuration for about 50 

epochs, as shown in Figure 6. Note that the training loss was recorded for every iteration 

while the validation loss was recorded for every epoch, so their 𝑥-coordinates are not 

the same, but we can still compare their values at the same point of the training process 

from the figure. We can see that the training loss continues to drop to around 20 after 

50 epochs, but the validation loss has reached its minimum of 35.11 at the 21st epoch 

and increases slightly in later epochs. The difference between the training and the 



Lu Meng        Speeding Up Examination of Heart Diseases with 3D Echocardiography and Machine Learning 

 25 / 55 

 

validation loss and the pattern of increase in the validation loss indicate the overfitting 

problem. The problem was possibly caused by the limited available training data, as 

there were only 241 training data for the A2C view (see Table 2). Therefore, I resorted 

to data augmentation to mitigate this problem.  

 

5.4. Improvement with Data Augmentation 

To solve the overfitting problem, I performed data augmentation that increased the 

training data size. The transformations performed on the input echo data are as follows:  

1. Randomly zooming with a factor in [0.9, 1.1] 

2. Randomly shifting [−5, 5] voxels in the 𝑥, 𝑦, and 𝑧 axes 

3. Randomly rotating [−15∘, 15∘] along the 𝑧 axis and [−10∘, 10∘] along the 

𝑥 and 𝑦 axes 

4. Randomly multiplying the intensity with [0.75, 1.25]  and then randomly 

adding [−0.25, 0.25] 

 

 
Figure 7. Data Augmentation Example. The two images are slices of 3D echo data. 

The left one is the original data. The right one is the transformed data by choosing the 

random parameters to extreme values.  

 

The transforms were performed on-the-fly during training using background worker 

threads, which did not prolong the training time. The values used in each kind of 

transformation were carefully designed so that the central part of the echo data was still 

visible in the window, as shown in the example in Figure 7. Note that the rotational 

degree along the 𝑧-axis could be slightly larger than those of the other two axes because 

the echo data is pyramid-shaped and possesses some rotational symmetry along the 𝑧-
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axis. Besides, the intensity values were manipulated after they were normalized to 

[−1, 1] . All random values were drawn from uniform distributions, and third-order 

spline interpolation was used to interpolate values.  

I then trained a model with this data augmentation for 100 epochs. Figure 8 shows 

that the best validation loss is 32.33, achieved at the 35th epoch, which is improved 

from previous results. However, the overall trend still reveals the overfitting problem 

as the validation loss goes up from the best epoch to more than 36, much greater than 

the training loss of less than 20. Therefore, I decided to explore other methods to make 

the network learn better and further alleviate overfitting.  

 

 

Figure 8. Loss Plot with Data Augmentation. The 𝑦-axis is the MSE loss. For the 

training loss, the 𝑥-axis is the number of iterations. For the validation loss, the 𝑥-axis 

is the number of epochs.  

 

5.5. Improvement with Adaptive Wing Loss 

A problem with the current heatmaps is that the foreground area, which contains a 

landmark, only accounts for a small portion of the entire heatmap, as shown in Figure 
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5. Therefore, identically calculating the loss of every voxel may misdirect the network 

to the unimportant background area. To solve the problem, I introduced the Adaptive 

Wing loss proposed by Wang et al. [13] to my training process.  

The Adaptive Wing loss [13] takes the form of 

AWing(𝑦, 𝑦∗) = {
𝜔ln (1 + |

𝑦∗ − 𝑦

𝜖
|

𝛼−𝑦∗

) , if |𝑦∗ − 𝑦| < 𝜃

𝐴|𝑦∗ − 𝑦| − 𝐶, otherwise

 

where 𝑦 is the prediction, 𝑦∗ is the ground truth, and 

𝐴 = 𝜔 (
1

1 + (
𝜃
𝜖)

(𝛼−𝑦∗)
) (𝛼 − 𝑦∗) ((

𝜃

𝜖
)

(𝛼−𝑦∗−1)

) (
1

𝜖
) 

𝐶 = (𝜃𝐴 − 𝜔ln (1 + (
𝜃

𝜖
)

𝛼−𝑦∗

)) 

 

 

Figure 9. Loss and Gradient of Loss Functions. Retrieved from Wang et al. [13]. The 

𝑥-axis is (𝑦∗ − 𝑦). In (a), the 𝑦-axis is the loss. In (b), the 𝑦-axis is the gradient of 

the loss.  

 

This is an adaptive version of the Wing loss [14], aiming to tackle the imbalance 

of foreground and background in heatmaps. When 𝑦∗ is large, i.e., close to a landmark, 

the Adaptive Wing loss behaves like a Wing loss, imposing a stronger gradient than the 

MSE loss, as shown in the green curve in Figure 9(b). But when 𝑦∗  is small, i.e., 

belongs to the background, the Adaptive Wing loss behaves like an MSE loss, as shown 

in the violet curve in Figure 9(b). This loss makes the network focus more on areas 
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close to landmarks and learn the foreground better.  

Furthermore, Wang et al. [13] combined the Adaptive Wing loss with a weighted 

loss map mask in the form of 

𝑀 = {
1, where ℍ𝑑 >= 0.2
0, otherwise

 

where ℍ𝑑  is generated from the ground truth heatmap ℍ∗  by a 3 × 3 × 3  gray 

dilation. And then, the weighted loss is calculated as 

𝐹𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑙𝑜𝑠𝑠(ℍ, ℍ∗) = 𝐹𝑙𝑜𝑠𝑠(ℍ, ℍ∗) ⊗ (𝑤 ⋅ 𝑀 + 1) 

where ⊗ is element-wise multiplication and 𝑤 ∈ ℝ+ is a scalar hyperparameter to 

control how much weight to add to the foreground.  

As a result, areas near a landmark further receive a loss of 𝑤 + 1  times the 

original one. This weighted loss puts more emphasis on the foreground region. It can 

enhance the effect of the Adaptive Wing loss in counterbalancing the fact that the 

foreground is relatively small compared to the background.  

 

 

Figure 10. Loss Plot with Adaptive Wing Loss. The vertical axis is the Adaptive Wing 

loss. For the training loss, the horizontal axis is the number of iterations. For the 

validation loss, the horizontal axis is the number of epochs.  
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Figure 11. Loss Plot with Adaptive Wing Loss and Weighted Loss Map Mask. The 

vertical axis is the weighted Adaptive Wing loss. For the training loss, the horizontal 

axis is the number of iterations. For the validation loss, the horizontal axis is the number 

of epochs.  

 

I tested the Adaptive Wing loss with and without the weighted loss map mask for 

100 epochs, and the results are promising, as shown in Figures 10 and 11. Although the 

validation loss value cannot be compared to previous losses as the loss function has 

been changed, we can still see that for Adaptive Wing loss without the weighted loss 

map mask (Figure 10), the best epoch is achieved at the 82nd epoch, which is much later 

than the previous results, and there are almost no signs of overfitting as the validation 

loss is comparable to the training loss. The result is similar for Adaptive Wing loss with 

the weighted loss map mask (Figure 11). Still, it is noticeable that the network 

converges much faster when the loss is weighted, indicating that it can learn the 

foreground better. However, the validation loss again goes up at the end of the training, 

which may imply that the learning rate is too large and needs to be manually adjusted 

in later stages of training.   
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5.6. Improvement with Learning Rate Decay 

To avoid the fluctuations and increases in the loss that occurred in later stages of 

training, I further introduced a learning rate scheduler to the trainer, which 

automatically decreased the learning to 1 10⁄  after every 30 epochs because I noticed 

that the validation loss reached its minimum in around 30 epochs in previous 

experiments. With an initial learning rate of 1𝑒-5, the scheduler dropped the learning 

rate to 1𝑒-6, 1𝑒-7, and 1𝑒-8 at the 30th, 60th, and 90th epoch, respectively. As shown 

in Figure 12, the validation loss is much more stable and convergent than that in Figure 

11, as the loss no longer goes up or fluctuates at the end of training. The final loss of 

around 4.2𝑒3 is about the same as the training loss and much lower than the previous 

4.5𝑒3 in Figure 10. Such a pattern appearing in the validation loss indicates that the 

training process is stable and reliable.  

 

 

Figure 12. Loss Plot with Learning Rate Decay. The vertical axis is the weighted 

Adaptive Wing loss. For the training loss, the horizontal axis is the number of iterations. 

For the validation loss, the horizontal axis is the number of epochs.  
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5.7. Improvement Analysis 

To prove the effectiveness of my improvements, I compared the performance of the 

previous models trained on the A2C view at the 50th epoch on the test dataset. To 

convert a predicted heatmap to predicted landmarks, I extracted the coordinate of the 

maximum value on the 𝑖 -th channel of the predicted heatmap as the predicted 

coordinate 𝐱𝑖 ∈ ℝ3 of landmark 𝐿𝑖, as follows:  

𝐱𝑖 = argmax ℍ𝑖  for 𝑖 ∈ {1, … , 𝑁} 

where 𝑁 is the number of landmarks on the A2C view, which also equals the number 

of channels in ℍ.  

Then I calculated 𝐱𝑖 ’s Euclidean distances to their corresponding ground truth 

landmark coordinates 𝐱𝑖
∗’s. Let 𝑆 be the amount of data in the testing dataset and 𝑗 ∈

{1, … , 𝑆} , then 𝐱𝑖
(𝑗)

∈ ℝ3  and 𝐱𝑖
∗(𝑗)

∈ ℝ3  are just the predicted and ground truth 

landmark coordinates of landmark 𝐿𝑖 on the 𝑗-th testing echo data, respectively. The 

point-to-point error 𝐸𝑝2𝑝
(𝑗)

 of the 𝑗-th testing data is defined as:  

𝐸𝑝2𝑝
(𝑗)

=
1

𝑁
∑‖𝐱𝑖

∗(𝑗)
− 𝐱𝑖

(𝑗)
‖

𝑁

𝑖=1

 

The median, mean, and standard deviation of all 𝐸𝑝2𝑝
(𝑗)

 on the testing dataset are 

shown in Table 4. Remarkably, the model trained with data augmentation, weighted 

Adaptive Wing loss, and learning rate decay achieved the best mean error 4.39 with 

the lowest standard deviation 4.10. In fact, we can see decrements in the mean 𝐸𝑝2𝑝 

after each improvement method is implemented. From method §5.4 to method §5.6, the 

mean 𝐸𝑝2𝑝 drops by 4.64%, 10.69%, and 11.49% compared to method §5.3. And 

despite a slight increase in the standard deviation of 𝐸𝑝2𝑝 in method §5.4, its best value 

in method §5.6 is still 14.94% better than that of method §5.3. It indicates that my 

model was more accurate and stable after these improvements. Additionally, it is also 

noticeable that method §5.6’s median 𝐸𝑝2𝑝 is not as good as that of method §5.4, but 

it does not necessarily mean that method §5.6 performs worse. Because we can see that 

the distributions of 𝐸𝑝2𝑝 in all methods are all skewed to the right as the median 𝐸𝑝2𝑝 
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is smaller than the mean 𝐸𝑝2𝑝. Such skewness indicates that the model performs well 

on most data but has large 𝐸𝑝2𝑝 on some data, which may be a sign of overfitting. The 

shortening of the gap between the median and mean 𝐸𝑝2𝑝  may imply that my 

improvements increased the model's generalizability, which echoes the observation in 

Section 5.6. Therefore, I believe that the improvements were effective.  

 

Table 4. Point-to-point Error for Improvement Analysis 

Method 
𝐸𝑝2𝑝 (in voxel) 

Median Mean ± SD 

§5.3 3.45 4.96 ± 4.82 

§5.4 𝟑. 𝟏𝟑 4.73 ± 4.95 

§5.5 3.21 4.43 ± 4.18 

§5.6 3.30 𝟒. 𝟑𝟗 ± 𝟒. 𝟏𝟎 

§5.3: model with MSE loss, §5.4: model with MSE loss and data augmentation, §5.5: 

model with weighted Adaptive Wing loss and data augmentation, §5.6: model with 

weighted Adaptive Wing loss, data augmentation, and learning rate decay. The best 

values are in bold.  

 

Furthermore, to visually evaluate the performance of the model, I rendered the 

predicted heatmaps from the best-performing model, an example of which is shown in 

Figure 13. Here, the local appearance heatmap ℍ𝐿𝐴  and the spatial configuration 

heatmap ℍ𝑆𝐶  were extracted from the last intermediate layers of the model. Since the 

activation function of ℍ𝐿𝐴  and ℍ𝑆𝐶   are linear and TanH, respectively, the output 

heatmaps may contain negative values. If I directly map the value range to [0, 255], 

the heatmaps may contain large grey areas. Therefore, I clamped the negative values to 

0  and rescaled positive values to [0, 255]  for better visualization, as the negative 

values do not help predict landmarks.  

Furthermore, since the activation functions of ℍ𝐿𝐴  and ℍ𝑆𝐶   are symmetric 

about the origin, if the network inverts them simultaneously, the final output heatmap 

ℍ𝑂𝑈𝑇 or ℍ ∶= ℍ𝐿𝐴 ⊗ ℍ𝑆𝐶  keeps the same. Therefore, I needed to judge whether to 

invert ℍ𝐿𝐴 and ℍ𝑆𝐶  for visualization based on the absolute values of the peaks and 
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troughs of the intensities. If the absolute value of the trough is larger than that of the 

peak, the heatmap probably needs to be inverted before going through the clamp-and-

rescale process. The whole procedure can be summarized as:  

1. 
𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑

ℍ = {
ℍ, if |max (ℍ)| ≥ |min (ℍ)|

−ℍ, otherwise
 (only invert ℍ𝐿𝐴, ℍ𝑆𝐶) 

2. 
𝑐𝑙𝑎𝑚𝑝𝑒𝑑

ℍ𝑖,(𝑥,𝑦,𝑧) = {𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑
ℍ𝑖,(𝑥,𝑦,𝑧), if 

𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑
ℍ𝑖,(𝑥,𝑦,𝑧) > 0

0, otherwise
 

3. 
𝑟𝑒𝑛𝑑𝑒𝑟𝑒𝑑

ℍ =
255𝑐𝑙𝑎𝑚𝑝𝑒𝑑ℍ

max(𝑐𝑙𝑎𝑚𝑝𝑒𝑑ℍ)
 

 

 

Figure 13. Heatmap Visualization Example. The images are 2D slices of the same 

channel of the heatmaps. ℍ∗: ground truth heatmap, ℍ𝑂𝑈𝑇: predicted heatmap, ℍ𝐿𝐴: 

local appearance heatmap, ℍ𝑆𝐶  : spatial configuration heatmap. The original value 

ranges are shown below each heatmap.  

 

We can see that the bright area on ℍ𝐿𝐴  is distributed across the heatmap as it 

considers every local point that can be the landmark. Meanwhile, on ℍ𝑆𝐶 , the bright 

area is centralized to one large region as it is the most likely region to contain the 

landmark. When ℍ𝐿𝐴  and ℍ𝑆𝐶   are combined, ℍ𝑆𝐶   discriminates those false 

positive areas on ℍ𝐿𝐴 and only retains one prominent area. The final output heatmap 
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ℍ𝑂𝑈𝑇 resembles the ground truth heatmap ℍ∗ as their peaks lie in the same area. This 

pattern proves that my network worked as designed.  

 

Table 5. Number of Parameters and MACCs 

View Landmarks Params MACCs 

A2C 3  16.83 M  3588.90 G  

A4C 6  17.1 M  3619.3 G  

ALAX 4  16.92 M  3599.03 G  

SAXA 3  16.83 M  3588.90 G  

SAXB 4  16.92 M  3599.03 G  

SAXM 6  17.1 M  3619.3 G  

SAXMV 6  17.1 M  3619.3 G  

M: × 106, G: × 109.  

 

The numbers of parameters and MACCs of the models for different views are also 

shown in Table 5. These statistics are calculated on the final structure with an input size 

of 128 × 128 × 128  and 128  channels in each intermediate layer. The different 

number of landmarks on different views affects the number of parameters and MACCs 

in that the number of convolutions in the output layers is different.  
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6. Cross-section Recovery 

6.1. Method Choice 

As shown in Table 1, some cross-sections may have more than three landmarks. 

Therefore, I may or may not use all predicted landmarks to fit the cross-section plane. 

To find the best way to recover the cross-sections, I have proposed three methods:  

1. Least Square Fit: Perform singular value decomposition on all predicted 

landmarks to fit a plane with the least squared distance to all landmarks.  

The centroid 𝐜 ∈ ℝ3 that lies on the plane is calculated as:  

𝐜 =
1

𝑁
∑ 𝐱𝑖

𝑁

𝑖=1

 

The unit normal vector 𝐧 ∈ ℝ3 where ‖𝐧‖ = 1 is calculated as:  

𝑈Σ𝑉⊤ =
SVD

[

𝐱1

…
𝐱𝑁

] − [
𝐜
…
𝐜

] 

𝐧 = 𝑣3 ‖𝑣3‖⁄  where [𝑣1 𝑣2 𝑣3] = 𝑉 

2. Top Confidence Fit: Interpret the intensity value of the brightest voxel on the 

predicted heatmap as its confidence level, and select the three landmarks with 

the top confidence levels to fit a plane. Note that this fit is deterministic, so any 

fitting methods are equivalent. In practice, I just used the Least Square Fit.  

3. RANSAC Fit: Run the random sample consensus algorithm [15] to randomly 

find the best fitting plane. There are four parameters in the RANSAC algorithm:  

 𝑛: the minimum number of landmarks required to fit a plane.  

 𝑘: the maximum number of iterations allowed in the algorithm.  

 𝑡: a threshold determining whether a landmark is close to a plane, which is 

calculated as the squared distance to the plane ((𝐱𝑖 − 𝐜) ⋅ 𝐧)2 in this case.  

 𝑑: the number of additional close landmarks required to assert that a plane 

fits well to the landmarks.  

For preliminary evaluation, I started with a relaxed condition using 𝑛 = 3, 𝑘 =

100 , 𝑡 = 0.5 , 𝑑 = 1 , which requires only 4  landmarks within 0.5  squared 

distance to the plane to have consensus. Again, singular value decomposition is 
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used when fitting to a subset of landmarks.  

To test the effects of different methods, I recovered cross-sections from the model 

trained on the A4C view, as it contains six landmarks. Since this postprocessing method 

selection does not involve machine learning techniques, I trained the model using all 

training and validation data and tested the performance on the testing data. The 

recovered cross-section is represented by two parameters (𝐜, 𝐧) where 𝐜 is a point on 

the plane and 𝐧 is a unit normal vector of the plane. I used two metrics to measure the 

difference between the predicted plane Π ∶= (𝐜, 𝐧) and the ground truth plane Π∗ ∶=

(𝐜∗, 𝐧∗).  

The first metric is 𝐸𝑠ℎ𝑖𝑓𝑡, which measures the displacement from the ground truth 

𝐜∗ to the predicted 𝐜 projected onto the unit ground truth normal 𝐧∗ where ‖𝐧∗‖ =

1, as follows:  

𝐸𝑠ℎ𝑖𝑓𝑡 = ‖((𝐜 − 𝐜∗) ⋅ 𝐧∗)𝐧∗‖ 

The second metric is 𝐸𝑎𝑛𝑔𝑙𝑒, which measures the angle between the 𝐧∗ and 𝐧, as 

follows:  

𝐸𝑎𝑛𝑔𝑙𝑒 = {
cos−1(𝐧 ⋅ 𝐧∗), if cos−1(𝐧 ⋅ 𝐧∗) ≤ 90∘

180∘ − cos−1(𝐧 ⋅ 𝐧∗), otherwise
 

Note that 𝐸𝑎𝑛𝑔𝑙𝑒 is always in the range [0∘, 90∘] no matter the directions of the two 

normal vectors.  

Additionally, I designed another metric 𝐸𝑓𝑖𝑡  that measures the mean squared 

distance from predicted landmarks (𝐱1, … , 𝐱𝑁)  to the predicted plane (𝐜, 𝐧) , as 

follows:  

𝐸𝑓𝑖𝑡 =
1

𝑁
∑((𝐱𝑖 − 𝐜) ⋅ 𝐧)2

𝑁

𝑖=1

 

Note that 𝐸𝑓𝑖𝑡 measures how well the predicted cross-section plane fits the predicted 

landmarks.  

For each echo data in the testing dataset, I obtained the predicted landmarks 

(𝐱1, … , 𝐱𝑁) from the predicted heatmaps by extracting the maximum points following 

𝐱𝑖 = argmax ℍ𝑖. And then, I used one of the three recovery methods listed above to 

obtain (𝐜, 𝐧). For the ground truth cross-section plane Π∗, I just used the Least Square 
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Fit method to obtain (𝐜∗, 𝐧∗) from the ground truth landmarks location (𝐱1
∗ , … , 𝐱𝑁

∗ ). 

Since the ground truth landmarks were just picked from the ground truth cross-section 

by annotators, the ground truth fit always had 𝐸𝑓𝑖𝑡 = 0.  

Then, I could obtain 𝐸𝑠ℎ𝑖𝑓𝑡
(𝑗)

 , 𝐸𝑎𝑛𝑔𝑙𝑒
(𝑗)

  from (𝐜(𝑗), 𝐧(𝑗)) , (𝐜∗(𝑗), 𝐧∗(𝑗))  and 𝐸𝑓𝑖𝑡
(𝑗)

 

from (𝐜(𝑗), 𝐧(𝑗)), (𝐱1
(𝑗)

, … , 𝐱𝑁
(𝑗)

) for the 𝑗-th echo data in the testing dataset where 

𝑗 ∈ {1, … , 𝑆} and 𝑆 is the size of the testing dataset. At last, statistics were obtained 

from (𝐸𝑠ℎ𝑖𝑓𝑡
(1)

, … , 𝐸𝑠ℎ𝑖𝑓𝑡
(𝑆)

), (𝐸𝑎𝑛𝑔𝑙𝑒
(1)

, … , 𝐸𝑎𝑛𝑔𝑙𝑒
(𝑆)

), and (𝐸𝑓𝑖𝑡
(1)

, … , 𝐸𝑓𝑖𝑡
(𝑆)

), as shown in Table 

6.  

 

Table 6. Recovery Methods Comparison 

A4C 

𝐸𝑠ℎ𝑖𝑓𝑡 𝐸𝑎𝑛𝑔𝑙𝑒 𝐸𝑓𝑖𝑡 

Median Mean ± SD Median Mean ± SD Median Mean ± SD 

Least 

Square Fit 
𝟏. 𝟒𝟓 𝟏. 𝟓𝟑 ± 𝟎. 𝟗𝟕 𝟏. 𝟖𝟕 𝟐. 𝟒𝟖 ± 𝟐. 𝟔𝟎 0.11 𝟎. 𝟔𝟏 ± 𝟏. 𝟐𝟗 

Top 

Confidence 

Fit 

1.58 1.68 ± 1.09 10.78 11.33 ± 4.18 𝟎. 𝟎𝟎 51.38 ± 271.87 

RANSAC 

Fit 
1.68 1.74 ± 1.29 8.00 7.73 ± 3.89 𝟎. 𝟎𝟎 13.16 ± 82.22 

The best values are in bold.  

 

We can see that the Least Square Fit is clearly the optimal method, obtaining the 

best result in all statistics of the three metrics (note that the median of 𝐸𝑓𝑖𝑡  is not 

comparable because the Top Confidence Fit and the RANSAC Fit only fit part of the 

landmarks). Although the difference of 𝐸𝑠ℎ𝑖𝑓𝑡 is not so large across different methods, 

the mean 𝐸𝑠ℎ𝑖𝑓𝑡 of the Least Square Fit is still 8.93% and 12.07% better than that 

of the Top Confidence Fit and the RANSAC Fit, respectively. Meanwhile, 𝐸𝑎𝑛𝑔𝑙𝑒 of 

the Least Square Fit is much better than the other two, with only an error of around 2∘. 

The mean 𝐸𝑎𝑛𝑔𝑙𝑒 of the Least Square Fit is 78.11% and 69.92% better than that of 

the Top Confidence Fit and the RANSAC Fit, respectively.  

The RANSAC Fit is unsuitable for this task because the maximum number of 
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landmarks on a cross-section is only six, so it is unlikely for the algorithm to distinguish 

outliers from inliers through random selection. The Confidence Fit performed the worst 

on recovering the normal vector probably because the brightness of the voxel does not 

carry explicit information about its confidence level, and the importance of all 

landmarks does not differ too much in determining the cross-section. Therefore, the 

Least Square Fit method was chosen to recover cross-sections in the following tasks.  

 

6.2. Handling SAXB 

The SAXB view contains four landmarks, including the Center of AV (𝐿1
(𝑆𝐴𝑋𝐵)

), the 

IAS (𝐿2
(𝑆𝐴𝑋𝐵)

), the SAXB-TV tip (𝐿3
(𝑆𝐴𝑋𝐵)

), and the PV tip (𝐿4
(𝑆𝐴𝑋𝐵)

). However, the PV 

tip is not labeled in most training data. In fact, only one training data from 2 November 

2021 contains the annotation of the PV tip, which means that the model could barely 

learn anything about the location of the PV tip. As a result, including the PV tip in the 

recovery process resulted in poor performance, as shown in the first row of Table 7. 

Therefore, I chose to ignore the predicted location of the PV tip and only use the Center 

of AV, the IAS, and the SAXB-TV tip to fit the SAXB view, i.e., (𝐱1, 𝐱2, 𝐱3). The result 

is shown in the second row of Table 7. As expected, excluding the useless information 

made both 𝐸𝑠ℎ𝑖𝑓𝑡  and 𝐸𝑎𝑛𝑔𝑙𝑒  better with improvements of 20%  to 30%  on both 

the median and the mean.  

 

Table 7. Improvement on SAXB Recovery 

SAXB 
𝐸𝑠ℎ𝑖𝑓𝑡 𝐸𝑎𝑛𝑔𝑙𝑒 

Median Mean ± SD Median Mean ± SD 

Before 2.24 2.98 ± 𝟐. 𝟔𝟖 14.72 21.31 ± 17.64 

After 𝟏. 𝟔𝟔 𝟐. 𝟑𝟔 ± 2.72 𝟏𝟏. 𝟕𝟔 𝟏𝟒. 𝟑𝟕 ± 𝟖. 𝟗𝟔 

Before: use the predicted locations of the Center of AV, the IAS, the SAXB-TV tip, and 

the PV tip to fit the SAXB cross-section plane; After: use the predicted locations of the 

Center of AV, the IAS, and the SAXB-TV tip to fit the SAXB cross-section plane. The 

best values are in bold.  
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6.3. Handling SAXA, SAXM, and SAXMV 

When using the Least Square Fit to recover the SAXA view, I found that 𝐸𝑎𝑛𝑔𝑙𝑒 

was exceptionally large, with the median value being around 60∘, while 𝐸𝑠ℎ𝑖𝑓𝑡 was 

comparable to those of other cross-section views, as shown in the first row of Table 8. 

After a closer examination of the landmarks of SAXA: the SAXA-LV apex (𝐿1
(𝑆𝐴𝑋𝐴)

), 

the Interventricular septum (𝐿2
(𝑆𝐴𝑋𝐴)

), and the RV apex (𝐿3
(𝑆𝐴𝑋𝐴)

), I noticed that their 

ground truth locations are almost colinear, so a slight shift in any of the predicted 

landmark locations would result in a significant degree of rotation of the predicted 

SAXA plane.  

To solve this problem, I explored alternative definitions of the SAXA view and 

found that the SAXA, SAXM, and SAXMV views are defined to be mutually parallel. 

Therefore, I could use the collective landmark information from the SAXA, SAXM, 

and SAXMV views to predict the normal vector of the SAXA view, as these landmarks 

are no longer colinear. To achieve this purpose, I first translated the centroids of the 

predicted landmarks of SAXA, SAXM, and SAXMV to the origin, respectively:  

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑
𝐱𝑖

(𝑉𝐼𝐸𝑊)
= 𝐱𝑖

(𝑉𝐼𝐸𝑊)
−

1

𝑁(𝑉𝐼𝐸𝑊)
∑ 𝐱𝑗

(𝑉𝐼𝐸𝑊)

𝑁(𝑉𝐼𝐸𝑊)

𝑗=1

 

for 𝑉𝐼𝐸𝑊 ∈ {𝑆𝐴𝑋𝐴, 𝑆𝐴𝑋𝑀, 𝑆𝐴𝑋𝑀𝑉} 

And then, I concatenated the translated landmark locations together as 

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑
𝐗(𝑆𝐴𝑋𝐴,𝑆𝐴𝑋𝑀,𝑆𝐴𝑋𝑀𝑉) = {

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑
𝐱𝑖

(𝑆𝐴𝑋𝐴)
,

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑
𝐱𝑗

(𝑆𝐴𝑋𝑀)
,

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑
𝐱𝑘

(𝑆𝐴𝑋𝑀𝑉)
} 

for 𝑖 ∈ {1, … , 𝑁(𝑆𝐴𝑋𝐴)}, 𝑗 ∈ {1, … , 𝑁(𝑆𝐴𝑋𝑀)}, 𝑘 ∈ {1, … , 𝑁(𝑆𝐴𝑋𝑀𝑉)}, which consisted 

of predicted locations of all 15 landmarks on the three cross-sections and performed 

singular value decomposition collectively on 
𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑

𝐗(𝑆𝐴𝑋𝐴,𝑆𝐴𝑋𝑀,𝑆𝐴𝑋𝑀𝑉):  

𝑈Σ𝑉⊤ =
SVD

[

𝐱1

…
𝐱𝑁

]  where 𝐱𝑖 ∈
𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑

𝐗(𝑆𝐴𝑋𝐴,𝑆𝐴𝑋𝑀,𝑆𝐴𝑋𝑀𝑉) 

𝐧(𝑆𝐴𝑋𝐴) = 𝑣3 ‖𝑣3‖⁄  where [𝑣1 𝑣2 𝑣3] = 𝑉 

The result would be a plane (𝟎, 𝐧(𝑆𝐴𝑋𝐴))  that has the least squared error over 

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑
𝐗(𝑆𝐴𝑋𝐴,𝑆𝐴𝑋𝑀,𝑆𝐴𝑋𝑀𝑉).  
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At last, I calculated the 𝐜(𝑆𝐴𝑋𝐴)  as usual, using only SAXA’s landmarks 

𝐗(𝑆𝐴𝑋𝐴) = {𝐱1
(𝑆𝐴𝑋𝐴)

, … , 𝐱
𝑁(𝑆𝐴𝑋𝐴)

(𝑆𝐴𝑋𝐴)
} and shifted the plane back to 𝐜(𝑆𝐴𝑋𝐴):  

𝐜(𝑆𝐴𝑋𝐴) =
1

𝑁(𝑆𝐴𝑋𝐴)
∑ 𝐱𝑖

(𝑆𝐴𝑋𝐴)

𝑁(𝑆𝐴𝑋𝐴)

𝑖=1

 

As a result, I could obtain the predicted SAXA plane Π(𝑆𝐴𝑋𝐴) = (𝐜(𝑆𝐴𝑋𝐴), 𝐧(𝑆𝐴𝑋𝐴)).  

For calculating the ground truth plane of SAXA, a similar approach was adopted 

by fitting the ground truth normal vector using 
𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑

𝐗∗(𝑆𝐴𝑋𝐴,𝑆𝐴𝑋𝑀,𝑆𝐴𝑋𝑀𝑉) because 

some of the ground truth landmark locations of the SAXA view are exactly colinear as 

well. This approach is feasible because the SAXA, SAXM, and SAXMV views were 

labeled at the same time index and on the same echo data. However, it is noticeable that 

some echo data labeled with SAXA’s landmarks were not labeled with SAXM’s or 

SAXMV’s landmarks. In such cases, I used the ground truth landmark locations of only 

two views to calculate the normal vector, i.e., 
𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑

𝐗∗(𝑆𝐴𝑋𝐴,𝑆𝐴𝑋𝑀)  or 

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑
𝐗∗(𝑆𝐴𝑋𝐴,𝑆𝐴𝑋𝑀𝑉).  

The result after this postprocessing is shown in the second row of Table 8. 𝐸𝑠ℎ𝑖𝑓𝑡 

is the same, as its prediction method was not changed. We can see that the median of 

𝐸𝑎𝑛𝑔𝑙𝑒  improved significantly to 5.43∘ , which is pretty small compared to the 

unreliable value before. Such improvement proved the effectiveness of my approach.  

 

Table 8. Improvement on SAXA Recovery 

SAXA 
𝐸𝑠ℎ𝑖𝑓𝑡 𝐸𝑎𝑛𝑔𝑙𝑒 

Median Mean ± SD Median Mean ± SD 

Before 1.96 2.85 ± 3.10 59.09 54.54 ± 28.77 

After 1.96 2.85 ± 3.10 𝟓. 𝟒𝟑 𝟕. 𝟐𝟗 ± 𝟔. 𝟔𝟕 

Before: use the predicted locations of landmarks on the SAXA view to fit the normal 

vector of the SAXA cross-section plane; After: use the predicted locations of landmarks 

on the SAXA, SAXM, and SAXMV views to fit the normal vector of the SAXA cross-

section plane. The best values are in bold.  

 

Although the SAXM and SAXMV views do not suffer from the collinearity 
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problem, it is presumed that utilizing the additional mutually parallel information 

among the SAXA, SAXM, and SAXMV views would improve the recovery results. 

Therefore, similar operations were performed on SAXM and SAXMV by using 

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑
𝐗(𝑆𝐴𝑋𝐴,𝑆𝐴𝑋𝑀,𝑆𝐴𝑋𝑀𝑉)  to recover the predicted normal vector. However, the 

ground truth normal vectors of SAXM and SAXMV were computed using only 

𝐗(𝑆𝐴𝑋𝑀)  and 𝐗(𝑆𝐴𝑋𝑀𝑉)  respectively because their locations do not suffer from the 

colinear problem, and hence the computation is accurate. The results are shown in Table 

9. Here, only 𝐸𝑎𝑛𝑔𝑙𝑒 is shown for comparison since the two methods only differ in 

predicting the normal. We can observe that on both views, the results obtained using 

the SAXA, SAXM, and SAXMV’s collective information are much better and stabler, 

as there are improvements in the median, mean, and standard deviation in both cases. 

For SAXM, the median and mean have been improved by 18.50% and 16.02%, and 

the standard deviation has also decreased by 41.40%. For SAXMV, the results are even 

better, with improvements of 46.97%, 34.68%, and 36.84% for the median, mean, 

and standard deviation, respectively. Therefore, this method was adopted to recover the 

SAXM and SAXMV views in the final evaluation.  

 

Table 9. Improvement on SAXM and SAXMV Recovery 

SAXM 
𝐸𝑎𝑛𝑔𝑙𝑒 

SAXMV 
𝐸𝑎𝑛𝑔𝑙𝑒 

Median Mean ± SD Median Mean ± SD 

Before 7.35 9.05 ± 11.28 Before 11.56 11.42 ± 7.41 

After 𝟓. 𝟗𝟗 𝟕. 𝟔𝟎 ± 𝟔. 𝟔𝟏 After 𝟔. 𝟏𝟑 𝟕. 𝟒𝟔 ± 𝟒. 𝟔𝟖 

Before: use the predicted locations of landmarks on the SAXM/SAXMV view to fit the 

normal vector of the SAXM/SAXMV cross-section plane; After: use the predicted 

locations of landmarks on the SAXA, SAXM, and SAXMV views to fit the normal 

vector of the SAXM/SAXMV cross-section plane. The best values are in bold.  
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7. Evaluation 

7.1. Landmark Localization 

To directly evaluate the models trained for the seven cross-sections on the testing 

dataset, I first considered the points-to-points error 𝐸𝑝2𝑝 on the predicted locations of 

the landmarks, as described in Section 5.7. In addition to the distance calculated in 

voxel side length, I also recovered the distance in millimeters 𝐸𝑟𝑒𝑎𝑙𝑝2𝑝 according to 

the scaling ratio of the echo data recorded during preprocessing, as discussed in Section 

3.2.3:  

𝐸𝑟𝑒𝑎𝑙𝑝2𝑝
(𝑉𝐼𝐸𝑊,𝑗)

=
1

𝑁(𝑉𝐼𝐸𝑊)
∑ 𝑟(𝑉𝐼𝐸𝑊,𝑗)‖𝐱𝑖

∗(𝑉𝐼𝐸𝑊,𝑗)
− 𝐱𝑖

(𝑉𝐼𝐸𝑊,𝑗)
‖

𝑁(𝑉𝐼𝐸𝑊)

𝑖=1

 

where 𝑉𝐼𝐸𝑊 is a cross-section view; 𝑗 is the 𝑗-th data in 𝑉𝐼𝐸𝑊’s testing dataset; 

(𝑉𝐼𝐸𝑊, 𝑗) represents a specific testing data; 𝑁(𝑉𝐼𝐸𝑊) is the number of landmarks on 

𝑉𝐼𝐸𝑊, which is the same for all 𝑗; 𝑟(𝑉𝐼𝐸𝑊,𝑗) is the ratio of the real data to the resized 

data for the testing data (𝑉𝐼𝐸𝑊, 𝑗) ; 𝐱𝑖
∗(𝑉𝐼𝐸𝑊,𝑗)

  is the ground truth coordinate of 

landmark 𝐿𝑖
(𝑉𝐼𝐸𝑊)

  on the testing data, and 𝐱𝑖
(𝑉𝐼𝐸𝑊,𝑗)

  is the predicted coordinate of 

landmark 𝐿𝑖
(𝑉𝐼𝐸𝑊)

 on the testing data.  

 

Table 10. Landmark Localization Evaluation 

View 

(#landmarks) 

𝐸𝑝2𝑝 (in voxel) 𝐸𝑟𝑒𝑎𝑙𝑝2𝑝 (in mm) 

Median Mean ± SD Median Mean + SD 

A2C (3) 3.27 4.42 ± 4.26 5.35 7.47 ± 7.66 

A4C (6) 2.94 3.91 ± 𝟑. 𝟒𝟖 𝟒. 𝟕𝟔 6.70 ± 7.05 

ALAX (4) 3.08 4.02 ± 3.91 4.84 𝟔. 𝟔𝟗 ± 𝟔. 𝟔𝟕 

SAXA (3) 3.51 4.77 ± 4.84 5.83 8.30 ± 10.29 

SAXB (4) 3.49 4.96 ± 4.61 5.86 8.63 ± 9.40 

SAXM (6) 3.03 4.28 ± 4.60 5.40 7.50 ± 10.20 

SAXMV (6) 𝟐. 𝟖𝟔 𝟑. 𝟗𝟎 ± 3.99 4.81 6.82 ± 8.77 

The best values are in bold.  
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The results are shown in Table 10. Although the scaling ratios of individual data are 

different, we can see that the statistics of 𝐸𝑟𝑒𝑎𝑙𝑝2𝑝 are approximately 1.6 times those 

of 𝐸𝑝2𝑝 . To evaluate the models’ performance in real life, we shall focus on the 

statistics of 𝐸𝑟𝑒𝑎𝑙𝑝2𝑝 and observe that the results on different cross-sections are similar, 

which indicates that the network worked stably on different cross-section views. The 

mean 𝐸𝑟𝑒𝑎𝑙𝑝2𝑝 ranges from 6.69 mm to 8.63 mm, which is approximately 3% to 

4% of the side length of the echo data. It is noticeable that the model of the ALAX 

view achieves both the minimum mean and the minimum standard deviation on 

𝐸𝑟𝑒𝑎𝑙𝑝2𝑝, which may reveal that the structural features of landmarks on the ALAX view 

are more easily distinguishable. On the contrary, the models of SAXA and SAXB have 

poorer performance, possibly because their landmarks are more concentrated and 

harder to recognize. Furthermore, it is noticeable that the median 𝐸𝑟𝑒𝑎𝑙𝑝2𝑝 is smaller 

than mean 𝐸𝑟𝑒𝑎𝑙𝑝2𝑝 for all the models, which may imply that the network suffers from 

high errors on a small amount of the testing data. Nonetheless, the localization results 

are within my expectations and are basically satisfactory.  

 

7.2. Cross-section Recovery 

To analyze the quality of the reconstructed cross-sections. I used the same metrics 

𝐸𝑠ℎ𝑖𝑓𝑡  and 𝐸𝑎𝑛𝑔𝑙𝑒  described in Section 6.1. For 𝐸𝑠ℎ𝑖𝑓𝑡 , I further recovered the 

distance in millimeters 𝐸𝑟𝑒𝑎𝑙𝑠ℎ𝑖𝑓𝑡 similarly to 𝐸𝑟𝑒𝑎𝑙𝑝2𝑝:  

𝐸𝑟𝑒𝑎𝑙𝑠ℎ𝑖𝑓𝑡
(𝑉𝐼𝐸𝑊,𝑗)

= 𝑟(𝑉𝐼𝐸𝑊,𝑗) ‖((𝐜(𝑉𝐼𝐸𝑊,𝑗) − 𝐜∗(𝑉𝐼𝐸𝑊,𝑗)) ⋅ 𝐧(𝑉𝐼𝐸𝑊,𝑗)) 𝐧(𝑉𝐼𝐸𝑊,𝑗)‖ 

where 𝑟(𝑉𝐼𝐸𝑊,𝑗)  is the ratio of the real data to the resized data for the testing data 

(𝑉𝐼𝐸𝑊, 𝑗).  

The results are shown in Table 11. Firstly, we can see that, like 𝐸𝑟𝑒𝑎𝑙𝑝2𝑝, 𝐸𝑟𝑒𝑎𝑙𝑠ℎ𝑖𝑓𝑡 

does not differ too much across different cross-section views. The mean 𝐸𝑟𝑒𝑎𝑙𝑠ℎ𝑖𝑓𝑡 

ranges from 1.93 mm to 2.98 mm, with its best value attained on the ALAX view 

again. This 𝐸𝑟𝑒𝑎𝑙𝑠ℎ𝑖𝑓𝑡 indicates that the centroid of the predicted landmarks is at most 

2.98 mm away from the centroid of the ground truth landmarks along the ground truth 

normal direction, which is not so large considering that the side length of the echo data 



Lu Meng        Speeding Up Examination of Heart Diseases with 3D Echocardiography and Machine Learning 

 44 / 55 

 

is almost 300 mm. Secondly, 𝐸𝑎𝑛𝑔𝑙𝑒 is quite different across different cross-section 

views, with a minimum mean of 6.38∘  and a maximum mean of 14.37∘ . For the 

cross-sections fitted using three landmarks (i.e., A2C and SAXB; recall that SAXB does 

not use the PV tip), the median and mean are relatively large, being around 12∘ and 

14∘, respectively. For the cross-section fitted using four landmarks (i.e., ALAX), the 

median and mean are around 9∘ and 11∘, respectively, which are comparably smaller. 

While for the cross-sections fitted using more than or equal to six landmarks (i.e., A4C, 

SAXA, SAXM, and SAXMV; recall that SAXA, SAXM, and SAXMV use all 15 

landmarks to fit their cross-sections), the median and mean are even smaller, which are 

approximately 5∘  and 7∘ , respectively. From this pattern, we can conclude that 

𝐸𝑎𝑛𝑔𝑙𝑒 is negatively correlated to the number of predicted landmarks used for fitting, 

which implies that the algorithm can achieve its best performance on cross-sections 

containing a relatively large number of identifiable landmarks.  

 

Table 11. Cross-section Recovery Evaluation 

View 

(#landmarks) 

𝐸𝑠ℎ𝑖𝑓𝑡 (in voxel) 𝐸𝑟𝑒𝑎𝑙𝑠ℎ𝑖𝑓𝑡 (in mm) 𝐸𝑎𝑛𝑔𝑙𝑒 (in degree) 

Median Mean ± SD Median Mean ± SD Median Mean ± SD 

A2C (3) 1.51 1.84 ± 1.70 2.30 3.18 ± 3.30 11.64 13.60 ± 10.96 

A4C (6) 1.44 1.53 ± 𝟎. 𝟗𝟕 2.29 2.55 ± 𝟏. 𝟕𝟔 𝟓. 𝟎𝟑 𝟔. 𝟑𝟖 ± 4.69 

ALAX (4) 𝟏. 𝟏𝟒 𝟏. 𝟒𝟗 ± 1.81 𝟏. 𝟗𝟑 𝟐. 𝟒𝟓 ± 2.95 8.53 11.45 ± 12.19 

SAXA (3) 1.96 2.85 ± 3.10 2.98 4.91 ± 5.94 5.43 7.29 ± 6.67 

SAXB (4) 1.66 2.37 ± 2.73 2.66 4.05 ± 5.32 11.76 14.37 ± 8.97 

SAXM (6) 1.76 2.38 ± 3.78 2.85 4.30 ± 8.61 5.99 7.60 ± 6.61 

SAXMV (6) 1.30 2.17 ± 3.82 2.03 3.97 ± 8.44 6.13 7.46 ± 𝟒. 𝟔𝟖 

The best values are in bold.  

 

7.3. Baselines 

This sub-section compares my results with two other baseline networks: the Patch-

based Fully Convolutional Neural Network (FCNN) [10] and the Down-sampling Net 

(DSN) [9], which were implemented by other members in our group, and the details 
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shall be found in their respective reports.  

 

Table 12. Baseline Comparison of Planar Position 

View 

(#landmarks) 

𝐸𝑟𝑒𝑎𝑙𝑠ℎ𝑖𝑓𝑡 (in mm) 

SCN (My) FCNN DSN 

Median Mean ± SD Median Mean ± SD Median Mean ± SD 

A2C (3) 𝟐. 𝟑𝟎 𝟑. 𝟏𝟖 ± 𝟑. 𝟑𝟎 3.73 4.94 ± 4.70 3.17 4.21 ± 3.89 

A4C (6) 2.29 2.55 ± 𝟏. 𝟕𝟔 𝟏. 𝟓𝟖 𝟐. 𝟓𝟐 ± 2.72 1.97 2.70 ± 2.53 

ALAX (4) 𝟏. 𝟗𝟑 𝟐. 𝟒𝟓 ± 𝟐. 𝟗𝟓 2.71 4.07 ± 3.80 2.44 4.00 ± 4.10 

SAXA (3) 𝟐. 𝟗𝟖 𝟒. 𝟗𝟏 ± 5.94 3.64 5.26 ± 5.68 3.62 5.21 ± 𝟓. 𝟒𝟑 

SAXB (4) 𝟐. 𝟔𝟔 𝟒. 𝟎𝟓 ± 5.32 5.59 7.21 ± 6.98 6.08 7.67 ± 𝟏. 𝟏𝟕 

SAXM (6) 𝟐. 𝟖𝟓 𝟒. 𝟑𝟎 ± 8.61 3.96 5.10 ± 𝟔. 𝟎𝟏 4.38 5.44 ± 6.07 

SAXMV (6) 𝟐. 𝟎𝟑 𝟑. 𝟗𝟕 ± 8.44 4.39 6.12 ± 6.93 4.73 6.33 ± 𝟔. 𝟖𝟑 

The best value in each row is in bold. 

 

Table 13. Baseline Comparison of Planar Orientation 

View 

(#landmarks) 

𝐸𝑎𝑛𝑔𝑙𝑒 (in degree) 

SCN (My) FCNN DSN 

Median Mean ± SD Median Mean ± SD Median Mean ± SD 

A2C (3) 11.64 13.60 ± 10.96 9.56 𝟏𝟏. 𝟓𝟏 ± 𝟏𝟎. 𝟓𝟔 𝟖. 𝟎𝟏 12.40 ± 11.36 

A4C (6) 5.03 6.38 ± 𝟒. 𝟔𝟗 𝟐. 𝟗𝟓 𝟔. 𝟏𝟑 ± 7.00 4.42 6.19 ± 6.27 

ALAX (4) 𝟖. 𝟓𝟑 𝟏𝟏. 𝟒𝟓 ± 12.19 10.71 12.78 ± 𝟏𝟏. 𝟕𝟓 10.39 13.25 ± 13.16 

SAXA (3) 𝟓. 𝟒𝟑 𝟕. 𝟐𝟗 ± 6.67 6.44 7.50 ± 𝟒. 𝟕𝟎 7.89 9.13 ± 6.96 

SAXB (4) 11.76 14.37 ± 𝟖. 𝟗𝟕 𝟏𝟏. 𝟎𝟏 𝟏𝟑. 𝟓𝟏 ± 11.49 14.47 16.50 ± 11.08 

SAXM (6) 𝟓. 𝟗𝟗 𝟕. 𝟔𝟎 ± 6.61 6.97 7.84 ± 𝟒. 𝟖𝟔 7.90 9.66 ± 6.66 

SAXMV (6) 𝟔. 𝟏𝟑 𝟕. 𝟒𝟔 ± 4.68 7.38 7.92 ± 𝟑. 𝟗𝟐 8.57 10.84 ± 9.89 

The best value in each row is in bold. 

 

Since FCNN and DSN only predict one landmark’s location in one forward pass, 

the localization evaluation was calculated on a landmark-by-landmark basis but not on 
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my view-by-view basis. Although it is possible to coalesce the landmark location data 

on each cross-section view, the group members did not perform such statistical analysis, 

so the landmark localization comparison is omitted here. And we shall focus on the 

cross-section recovery comparison. 𝐸𝑟𝑒𝑎𝑙𝑠ℎ𝑖𝑓𝑡  is shown in Table 12, and 𝐸𝑎𝑛𝑔𝑙𝑒  is 

shown in Table 13. 

We can observe that SCN excels at predicting the plane position, which is based on 

the centroid of landmarks on the cross-section. It obtains the best median and mean 

𝐸𝑟𝑒𝑎𝑙𝑠ℎ𝑖𝑓𝑡 on all cross-section planes except for A4C. This advantage is explainable 

because SCN predicts all landmarks’ locations on one cross-section with one model, 

enabling it to learn the relationships between different landmarks. Meanwhile, FCNN 

and DSN treat each landmark individually, so they may not predict the centroid of all 

landmarks on one cross-section so accurately. For 𝐸𝑎𝑛𝑔𝑙𝑒 , SCN achieves the best 

results on four cross-sections: ALAX, SAXA, SAXM, and SAXMV, which is still 

overall advantageous over the other two baselines. In summary, SCN performs better 

than FCNN and DSN in cross-section recovery.  
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8. Visualization 

To visually examine the quality of the recovered cross-sections, I rendered the 2D 

cross-section images on both the predicted plane Π = (𝐜, 𝐧)  and the ground truth 

plane Π∗ = (𝐜∗, 𝐧∗)  for comparison. To render an image, I needed to calculate the 

coordinates (relative to the 3D echo data) of the vertices on a 2D mesh grid which lies 

on the plane Π (or Π∗ in a similar way).  

The first step of this approach is to work out two direction vectors (𝐝𝐱, 𝐝𝐲), 𝐝𝐱 ∈

ℝ3, 𝐝𝐲 ∈ ℝ3  of the plane Π = (𝐜, 𝐧) , where ‖𝐝𝐱‖ = ‖𝐝𝐲‖ = 1  and 𝐝𝐱, 𝐝𝐲, 𝐧  are 

mutually perpendicular, as follows:  

𝑢𝑛𝑛𝑜𝑟𝑚𝑒𝑑
𝐝𝐱 = 𝐮 −

𝐮 ⋅ 𝐧

𝐧 ⋅ 𝐧
𝐧 

𝐝𝐱 = 𝑢𝑛𝑛𝑜𝑟𝑚𝑒𝑑
𝐝𝐱

‖
𝑢𝑛𝑛𝑜𝑟𝑚𝑒𝑑

𝐝𝐱‖
 

𝑢𝑛𝑛𝑜𝑟𝑚𝑒𝑑
𝐝𝐲 = 𝐧 × 𝐝𝐱 

𝐝𝐲 = 𝑢𝑛𝑛𝑜𝑟𝑚𝑒𝑑
𝐝𝐲

‖
𝑢𝑛𝑛𝑜𝑟𝑚𝑒𝑑

𝐝𝐲‖
 

where 𝐮 is a unit vector used to control the directions of 𝐝𝐱 and 𝐝𝐲, which is also 

the orientation of the image. In practice, I simply adopted 𝐮 = (1, 0, 0)⊤. Additionally, 

in case ‖
𝑢𝑛𝑛𝑜𝑟𝑚𝑒𝑑

𝐝𝐱‖ is very close to 0, any other unit vector can be chosen as 𝐮.  

 Secondly, to decide the field of view and the resolution of the image, I introduced 

two sets of parameters (𝑉𝑥, 𝑉𝑦) ∈ ℝ+
2   and (𝑅𝑥, 𝑅𝑦) ∈ ℤ+

2  , where 𝑉𝑥  and 𝑉𝑦 

determine the size of the viewport (i.e., the size of the mesh grid) along the width and 

height, and 𝑅𝑥 and 𝑅𝑦 determine the number of pixels (i.e., the density of the mesh 

grid) along the width and height. In practice, I used (𝑉𝑥, 𝑉𝑦) = (128, 128)  and 

(𝑅𝑥, 𝑅𝑦) = (512, 512). Then, I obtained the origin 𝐨 of the mesh grid as follows:  

𝐨 = 𝐜 −
𝑉𝑥

2
𝐝𝐱 −

𝑉𝑦

2
𝐝𝐲 

Hence, the set vertices on the mesh grid are 

{𝐨 + 𝑖
𝑉𝑥

𝑅𝑥
𝐝𝐱 + 𝑗

𝑉𝑦

𝑅𝑦
𝐝𝐲} 

for 𝑖 ∈ {1,2, … , 𝑅𝑥} and 𝑗 ∈ {1,2, … , 𝑅𝑦}. At last, the intensity values of the vertices 
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on the mesh grid are calculated from the 3D echo data using linear interpolation, and 

vertices outside the space of the 3D data are assigned 0 values. Uniformly randomly 

selected examples of the rendered images are shown in Table 14.  

 

Table 14. Cross-section Visualization Examples 
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(P): predicted cross-sections, (T): ground truth cross-sections. The column header is the 

identifier of the echo data.  
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9. Discussion 

9.1. Limitations 

9.1.1. Direct Prediction of Cross-section Parameters 

 This project uses a heatmap-based neural network to predict the locations of 

landmarks on a cross-section and then utilizes geometric methods to reconstruct cross-

section parameters from the landmark locations. However, this method may suffer from 

some drawbacks like the collinearity problem that we have seen on the SAXA view and 

the problem that the number of landmarks on a cross-section affects the quality of the 

recovered cross-section even though the localization errors of these landmarks are 

similar across different cross-sections. Therefore, it is possible to discover other neural 

network architectures that directly predicted the cross-section parameters from input 

echo data, which eliminates shortcomings of traditional geometric calculations.  

 

9.1.2. Adaptive Learnable Ground Truth Heatmap 

 In later research, Payer et al. [12] improved the SpatialConfiguration-Net by 

making the standard deviation 𝜎 in each ℍ𝑖
∗ a learnable parameter so that the network 

can decide by itself how accurately it can learn about each landmark’s location. The 

learned value of 𝜎 tells us how confident the network is about the landmark’s location; 

the smaller, the more confident. This adaptive 𝜎 is better than the manually selected 

fixed 𝜎 = 2.0 used in this project in that the network can better fit the ground truth 

heatmaps and make a more accurate prediction by making 𝜎 smaller.  

 Furthermore, the learnable 𝜎  is also a more informative indicator of the 

confidence level of each landmark for recovering the cross-section plane. If 𝜎 is too 

large for a landmark, which means that the network is uncertain about its location, we 

can exclude the landmark from the cross-section recovery. This approach can be 

adapted to the Top Confidence Fit in Section 6.1 by using 𝜎 instead of the intensity 

value as the confidence indicator, which may produce a better method than the Least 

Square Fit.  
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9.1.3. Sub-voxel Accuracy 

 The neural network in this project adopts a spatial resolution of 128 × 128 × 128, 

which is coarser than the original echo data. By extracting the maximum points from 

the predicted heatmaps, the predicted landmarks are confined to the vertices of a 

discrete grid, limiting the attainable accuracy of the network. Therefore, it is better to 

achieve sub-voxel accuracy by performing a quadratic approximation using voxels 

adjacent to the maximum voxel. This approach is possible as the center of the Gaussian 

function on the ground truth heatmaps also has a sub-voxel accuracy, so the network 

may be able to learn more accurate locations from the ground truth heatmaps.  

 

9.1.4. Training Process 

The project adopts a fixed 8 ∶ 2 ratio to split the training and the validation dataset, 

and hyperparameter tuning was carried out solely on the validation dataset. However, 

considering the limited data in the dataset, it is better to perform a 5-fold cross 

validation on the dataset so that the validation results would be more stable and reliable. 

Besides, it is also better to validate all cross-sections using the same configuration 

instead of relying solely on the results of the A2C view.  

When tuning the hyperparameters in the first stage, I simply chose the set of options 

through experience and experiments done by Payer et al. [12]. However, it would be 

better to explore more choices of loss functions and optimizers and perform a grid 

search on the hyperparameters to figure out the best configuration. In addition, I 

experienced gradient vanishing and gradient explosion when using the Nesterov SGD 

optimizer. Although the problem disappeared when I changed to the AdamW optimizer, 

the cause of this problem is still worth investigating.  

Furthermore, the data augmentation used in the project consisted of some simple 

geometric transformations. It is foreseeable that adding some other transformations 

would further improve the generalizability of the network. For example, Payer et al. 

[12] employed elastic deformations on 2D echo data, which may be extended to 3D for 

this project.  
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At last, training a model for one cross-section is time-consuming, taking up to 30 

hours. Therefore, it is better to speed up the training of other models by employing 

transfer learning because the first few layers of different models should share common 

parameters as they are used for preliminary feature extraction.  

 

9.1.5. Cross-section Recovery Metrics 

 When evaluating the reconstructed cross-sections, I mainly use two metrics 

𝐸𝑟𝑒𝑎𝑙𝑠ℎ𝑖𝑓𝑡  and 𝐸𝑎𝑛𝑔𝑙𝑒 . 𝐸𝑟𝑒𝑎𝑙𝑠ℎ𝑖𝑓𝑡  tells the distance between the centroids of the 

predicted and the ground truth landmarks along the ground truth plane normal, and it 

can be interpreted as the distance of the two planes only when 𝐸𝑎𝑛𝑔𝑙𝑒 is very small. 

Hence, 𝐸𝑎𝑛𝑔𝑙𝑒  seems to be a dominant metric in evaluating the quality of the 

reconstructed plane. Therefore, combining the two metrics into one for more intuitive 

evaluation is better.  

 

9.2. Future Work 

Based on the reconstructed 2D cross-section view, we can engineer a downstream 

neural network that takes in these 2D cross-sections and automatically diagnoses heart 

diseases. This would require designing deep CNNs to classify heart diseases and extra 

2D echo data labeled with the diagnosis of different heart diseases. Once this 

downstream neural network is completed, the combined neural network will have a 

complete workflow that takes in 3D echo data obtained by transducers and 

automatically suggests possible heart diseases of the patient, which can assist doctors 

in making diagnoses and make public screening of common structural diseases feasible.  
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10. Conclusion 

The project innovatively applied deep learning methods to speed up the acquisition 

of cross-section views of the heart. It used the SpatialConfiguration-Net framework [12] 

that combines the local appearance and spatial configuration information into a single 

network trained in an end-to-end manner. The network’s ability to combine local and 

global features and multiple improvement techniques enabled the model to accurately 

predict the landmark locations with a median point-to-point error down to 4.76 mm. 

The cross-section views were then reconstructed automatically from the predicted 

landmarks using the least squared distance fit combined with other constraints on the 

cross-sections. The median of the angle difference between the reconstructed cross-

sections and the ground truth cross-sections was down to 5.03∘.  

This process saves the trouble of manually locating cross-sections to obtain 2D 

echocardiography and is expected to improve the efficiency of heart disease 

examination. In the future, this project can be used by other downstream neural 

networks to automatically diagnose heart diseases, which not only saves time for 

cardiologists but also makes mass heart disease screening possible.  
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