🌑

Explore / Study / Mathematics / Group Theory 1.3k words | 7 minutes

Groups

  1. Groups
  2. Abelian Groups
  3. Cancelation Law
  4. Group Exponentiation
  5. Group under addition modulo NNN: ZN\mathbb{Z}_NZN​
  6. Subgroups
  7. Fermat’s Little Theorem
  8. Group under multiplication modulo NNN: ZN∗\mathbb{Z}^*_NZN∗​
  9. Euler’s totient function ϕ(N)\phi(N)ϕ(N)

Groups

  • Group: Set G\mathbb G and a binary operation \circ defined on G\mathbb G such that:

    • (Closure): For all g1,g2Gg_1, g_2 \in \mathbb{G}, it holds that g1g2Gg_1 \circ g_2 \in \mathbb{G}.
    • (Identity): There exists an identity element eGe \in \mathbb{G} s.t. eg=g=gee \circ g = g = g \circ e for all gGg \in \mathbb{G}.
    • (Inverse): For every element gGg \in \mathbb{G} there exists an inverse element hGh \in \mathbb{G} s.t. gh=e=hgg \circ h = e = h \circ g.
    • (Associativity): For all g1,g2,g3Gg_{1}, g_{2}, g_{3} \in \mathbb{G}, g1(g2g3)=(g1g2)g3g_{1} \circ\left(g_{2} \circ g_{3}\right)=\left(g_{1} \circ g_{2}\right) \circ g_{3}.

    Order of a finite group G\mathbb G, denoted G| \mathbb G |, is the number of elements in G\mathbb G.

Abelian Groups

  • Abelian Group: corresponds to a set G\mathbb G and a binary operation \circ defined on G\mathbb G such that:
    • (Closure): For all g1,g2Gg_1, g_2 \in \mathbb{G}, it holds that g1g2Gg_1 \circ g_2 \in \mathbb{G}.
    • (Identity): There exists an identity element eGe \in \mathbb{G} s.t. eg=g=gee \circ g = g = g \circ e for all gGg \in \mathbb{G}.
    • (Inverse): For every element gGg \in \mathbb{G} there exists an inverse element hGh \in \mathbb{G} s.t. gh=e=hgg \circ h = e = h \circ g.
    • (Associativity): For all g1,g2,g3Gg_{1}, g_{2}, g_{3} \in \mathbb{G}, g1(g2g3)=(g1g2)g3g_{1} \circ\left(g_{2} \circ g_{3}\right)=\left(g_{1} \circ g_{2}\right) \circ g_{3}.
    • (Commutativity): For all g1,g2Gg_1, g_2 \in \mathbb{G}, g1g2=g2g1g_1 \circ g_2 = g_2 \circ g_1.

Cancelation Law

  • Theorem (Cancelation Law). Let G\mathbb G be a group and a,b,cGa, b, c \in \mathbb{G}. If ac=bcac = bc, then a=ba = b. In particular, if ac=cac = c, then aa is the identity in G\mathbb{G}.

Group Exponentiation

  • The rules of integer exponentiation hold also for Group Exponentiation:

    gmgm=gm+m,(gm)m=gmm,g1=gg^{m} \cdot g^{m^{\prime}}=g^{m+m^{\prime}},\left(g^{m}\right)^{m^{\prime}}=g^{m m^{\prime}}, g^{1}=g

  • If G\mathbb G is an abelian group, and g,hGg, h \in \mathbb G, then gmhm=(gh)mg^m \cdot h^m = (gh)^m.

Group under addition modulo NN: ZN\mathbb{Z}_N

  • ZN={0,,N1}\mathbb{Z}_N = \{0, \ldots, N - 1\} under addition modulo NN, i.e., a+b:=[a+bmodN]a + b := [a + b \bmod N] is an Abelian group.
    • Identity is 00.
    • Inverse of gg is [(Ng)modN][(N- g) \bmod N], since g+(Ng)=0modNg + (N- g) = 0 \bmod N.
    • Associativity, Commutativity hold by usual properties of addition.
    • Order of this group is NN.
  • mg=g++gm timesmodNm \cdot g=\underbrace{g+\ldots+g}_{m \text { times}} \bmod N: Group Exponentiation can be computed efficiently by standard arithmetic.

Subgroups

  • Definition. If G\mathbb G is a group, a set HG\mathbb{H} \subseteq \mathbb{G} is a subgroup of G\mathbb G if H\mathbb{H} itself forms a group under the same operation. Every group G\mathbb G always has the trivial subgroups G\mathbb G and {1}\{1\}. H\mathbb{H} is a strict subgroup of G\mathbb G if HG\mathbb H \ne \mathbb G.

Fermat’s Little Theorem

  • Theorem (Fermat’s Little Theorem):

    Let G\mathbb G be a finite group of order m=Gm = | \mathbb G |. Then for any gGg \in \mathbb G, it holds that gm=1g^m = 1.

  • Corollary 1 (Fermat’s Little Theorem):

    Let G\mathbb G be a finite group of order mm. Then for any gGg \in \mathbb G, and any integer xx, we have gx=g[xmodm]g^x = g^{[x \bmod m]}.

  • Corollary 2 (Fermat’s Little Theorem):

    Let G\mathbb G be a finite group of order mm. Let e>0e > 0 be an integer, and define the function, fe:GGf_e : \mathbb{G} \rightarrow \mathbb{G} by fe(g)=gef_e(g) = g^e.

    • If gcd(e,m)=1\gcd(e, m) = 1, then fef_e is a permutation, i.e., a bijection.
    • Moreover, if d=e1modmd = e^{-1} \bmod m, then fdf_d is the inverse of fef_e.

Group under multiplication modulo NN: ZN\mathbb{Z}^*_N

  • ZN:=\mathbb{Z}^*_N := invertible elements in {1,,N1}\{1,\ldots, N - 1\} under multiplication modulo NN

    :={b{1,,N1}gcd(b,N)=1}:= \{b \in \{1,\ldots, N- 1\}|\gcd(b, N) = 1\}

  • Proposition: ZN\mathbb{Z}^*_N is an abelian group under multiplication mod NN.

  • gm=gggm timesmodNg^m=\underbrace{g \cdot g \cdot \ldots \cdot g}_{m \text { times}} \bmod N: Group Exponentiation can be computed efficiently in this group.

Euler’s totient function ϕ(N)\phi(N)

  • Euler’s totient function is defined as ϕ(N):=\phi(N) := the number of invertible elements modulo NN.

    In other words, ϕ(N)={g{1,,N1}:gcd(g,N)=1}=ZN\phi(N) = |\{g \in \{1,\ldots, N - 1\} : \gcd(g, N) = 1 \} | = |\mathbb{Z}^*_N| is Euler’s phi or totient function.

    1. If NN is prime, then ϕ(N)=N1\phi(N) = N- 1.

    2. If N=pqN = p \cdot q, for distinct primes p,qp, q, then

      ϕ(N)=(N1){multiples of p}{multiples of q}ϕ(N)=(N1){p,2p,,(q1)p}{q,2q,,(p1)q}ϕ(N)=(N1)(q1)(p1)=Nqp+1=(p1)(q1)\begin{array}{l}\phi(N)=(N-1)-\mid\{\text {multiples of } p\}|-|\{\text {multiples of } q\} \mid \\\phi(N)=(N-1)-|\{p, 2 p, \ldots,(q-1) p\}|-|\{q, 2 q, \ldots,(p-1) q\}| \\\phi(N)=(N-1)-(q-1)-(p-1)=N-q-p+1=(p-1)(q-1)\end{array}

— Mar 14, 2023

Creative Commons License
Groups by Lu Meng is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at About.